Package: shrinkGPR 1.0.1
shrinkGPR: Scalable Gaussian Process Regression with Hierarchical Shrinkage Priors
Efficient variational inference methods for fully Bayesian Gaussian Process Regression (GPR) models with hierarchical shrinkage priors, including the triple gamma prior for effective variable selection and covariance shrinkage in high-dimensional settings. The package leverages normalizing flows to approximate complex posterior distributions. For details on implementation, see Knaus (2025) <doi:10.48550/arXiv.2501.13173>.
Authors:
shrinkGPR_1.0.1.tar.gz
shrinkGPR_1.0.1.zip(r-4.5)shrinkGPR_1.0.1.zip(r-4.4)shrinkGPR_1.0.1.zip(r-4.3)
shrinkGPR_1.0.1.tgz(r-4.5-any)shrinkGPR_1.0.1.tgz(r-4.4-any)shrinkGPR_1.0.1.tgz(r-4.3-any)
shrinkGPR_1.0.1.tar.gz(r-4.5-noble)shrinkGPR_1.0.1.tar.gz(r-4.4-noble)
shrinkGPR_1.0.1.tgz(r-4.4-emscripten)shrinkGPR_1.0.1.tgz(r-4.3-emscripten)
shrinkGPR.pdf |shrinkGPR.html✨
shrinkGPR/json (API)
NEWS
# Install 'shrinkGPR' in R: |
install.packages('shrinkGPR', repos = c('https://neferkareii.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/neferkareii/shrinkgpr/issues
Last updated 11 hours agofrom:a5d1b6832a. Checks:8 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 05 2025 |
R-4.5-win | OK | Feb 05 2025 |
R-4.5-mac | OK | Feb 05 2025 |
R-4.5-linux | OK | Feb 05 2025 |
R-4.4-win | OK | Feb 05 2025 |
R-4.4-mac | OK | Feb 05 2025 |
R-4.3-win | OK | Feb 05 2025 |
R-4.3-mac | OK | Feb 05 2025 |
Exports:calc_pred_momentseval_pred_densgen_posterior_sampleskernel_matern_12kernel_matern_32kernel_matern_52kernel_seLPDSshrinkGPRsimGPRsylvester
Dependencies:bitbit64callrclicolorspacecorocrayondescfarvergluegslhmsjsonlitelabelinglifecyclemagrittrmunsellpkgconfigprettyunitsprocessxprogresspsR6RColorBrewerRcpprlangsafetensorsscalestorchvctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Calculate Predictive Moments | calc_pred_moments |
Evaluate Predictive Densities | eval_pred_dens |
Generate Posterior Samples | gen_posterior_samples |
Kernel Functions for Gaussian Processes | kernel_functions kernel_matern_12 kernel_matern_32 kernel_matern_52 kernel_se |
Log Predictive Density Score | LPDS |
Generate Predictions | predict.shrinkGPR |
Gaussian Process Regression with Shrinkage and Normalizing Flows | shrinkGPR |
Simulate Data for Gaussian Process Regression | simGPR |
Sylvester Normalizing Flow | sylvester |