Package: shrinkGPR 1.0.1

shrinkGPR: Scalable Gaussian Process Regression with Hierarchical Shrinkage Priors

Efficient variational inference methods for fully Bayesian Gaussian Process Regression (GPR) models with hierarchical shrinkage priors, including the triple gamma prior for effective variable selection and covariance shrinkage in high-dimensional settings. The package leverages normalizing flows to approximate complex posterior distributions. For details on implementation, see Knaus (2025) <doi:10.48550/arXiv.2501.13173>.

Authors:Peter Knaus [aut, cre]

shrinkGPR_1.0.1.tar.gz
shrinkGPR_1.0.1.zip(r-4.5)shrinkGPR_1.0.1.zip(r-4.4)shrinkGPR_1.0.1.zip(r-4.3)
shrinkGPR_1.0.1.tgz(r-4.5-any)shrinkGPR_1.0.1.tgz(r-4.4-any)shrinkGPR_1.0.1.tgz(r-4.3-any)
shrinkGPR_1.0.1.tar.gz(r-4.5-noble)shrinkGPR_1.0.1.tar.gz(r-4.4-noble)
shrinkGPR_1.0.1.tgz(r-4.4-emscripten)shrinkGPR_1.0.1.tgz(r-4.3-emscripten)
shrinkGPR.pdf |shrinkGPR.html
shrinkGPR/json (API)
NEWS

# Install 'shrinkGPR' in R:
install.packages('shrinkGPR', repos = c('https://neferkareii.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/neferkareii/shrinkgpr/issues

On CRAN:

Conda:

3.48 score 1 stars 186 downloads 11 exports 32 dependencies

Last updated 1 months agofrom:a5d1b6832a. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 07 2025
R-4.5-winOKMar 07 2025
R-4.5-macOKMar 07 2025
R-4.5-linuxOKMar 07 2025
R-4.4-winOKMar 07 2025
R-4.4-macOKMar 07 2025
R-4.4-linuxOKMar 07 2025
R-4.3-winOKMar 07 2025
R-4.3-macOKMar 07 2025

Exports:calc_pred_momentseval_pred_densgen_posterior_sampleskernel_matern_12kernel_matern_32kernel_matern_52kernel_seLPDSshrinkGPRsimGPRsylvester

Dependencies:bitbit64callrclicolorspacecorocrayondescfarvergluegslhmsjsonlitelabelinglifecyclemagrittrmunsellpkgconfigprettyunitsprocessxprogresspsR6RColorBrewerRcpprlangsafetensorsscalestorchvctrsviridisLitewithr