Package: shrinkGPR 1.0.1

shrinkGPR: Scalable Gaussian Process Regression with Hierarchical Shrinkage Priors

Efficient variational inference methods for fully Bayesian Gaussian Process Regression (GPR) models with hierarchical shrinkage priors, including the triple gamma prior for effective variable selection and covariance shrinkage in high-dimensional settings. The package leverages normalizing flows to approximate complex posterior distributions. For details on implementation, see Knaus (2025) <doi:10.48550/arXiv.2501.13173>.

Authors:Peter Knaus [aut, cre]

shrinkGPR_1.0.1.tar.gz
shrinkGPR_1.0.1.zip(r-4.5)shrinkGPR_1.0.1.zip(r-4.4)shrinkGPR_1.0.1.zip(r-4.3)
shrinkGPR_1.0.1.tgz(r-4.5-any)shrinkGPR_1.0.1.tgz(r-4.4-any)shrinkGPR_1.0.1.tgz(r-4.3-any)
shrinkGPR_1.0.1.tar.gz(r-4.5-noble)shrinkGPR_1.0.1.tar.gz(r-4.4-noble)
shrinkGPR_1.0.1.tgz(r-4.4-emscripten)shrinkGPR_1.0.1.tgz(r-4.3-emscripten)
shrinkGPR.pdf |shrinkGPR.html
shrinkGPR/json (API)
NEWS

# Install 'shrinkGPR' in R:
install.packages('shrinkGPR', repos = c('https://neferkareii.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/neferkareii/shrinkgpr/issues

On CRAN:

3.48 score 1 stars 57 downloads 11 exports 32 dependencies

Last updated 11 hours agofrom:a5d1b6832a. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 05 2025
R-4.5-winOKFeb 05 2025
R-4.5-macOKFeb 05 2025
R-4.5-linuxOKFeb 05 2025
R-4.4-winOKFeb 05 2025
R-4.4-macOKFeb 05 2025
R-4.3-winOKFeb 05 2025
R-4.3-macOKFeb 05 2025

Exports:calc_pred_momentseval_pred_densgen_posterior_sampleskernel_matern_12kernel_matern_32kernel_matern_52kernel_seLPDSshrinkGPRsimGPRsylvester

Dependencies:bitbit64callrclicolorspacecorocrayondescfarvergluegslhmsjsonlitelabelinglifecyclemagrittrmunsellpkgconfigprettyunitsprocessxprogresspsR6RColorBrewerRcpprlangsafetensorsscalestorchvctrsviridisLitewithr