# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "shrinkGPR" in publications use:' type: software license: GPL-2.0-or-later title: 'shrinkGPR: Scalable Gaussian Process Regression with Hierarchical Shrinkage Priors' version: 1.0.1 doi: 10.32614/CRAN.package.shrinkGPR abstract: Efficient variational inference methods for fully Bayesian Gaussian Process Regression (GPR) models with hierarchical shrinkage priors, including the triple gamma prior for effective variable selection and covariance shrinkage in high-dimensional settings. The package leverages normalizing flows to approximate complex posterior distributions. For details on implementation, see Knaus (2025) . authors: - family-names: Knaus given-names: Peter email: peter.knaus@wu.ac.at orcid: https://orcid.org/0000-0001-6498-7084 repository: https://neferkareii.r-universe.dev commit: a5d1b6832a17083b14b275b2d7de09a7038457b1 contact: - family-names: Knaus given-names: Peter email: peter.knaus@wu.ac.at orcid: https://orcid.org/0000-0001-6498-7084